Overview

• Intro
• Global architecture
• Content Delivery Network (CDN)
• Application servers
• Persistent storage

Focus on architecture, not so much on operations or non-technical stuff
Some figures

• The Wikimedia Foundation:
 • Was founded in June 2003, in Florida
 • Currently has 9 employees, the rest is done by volunteers
 • Yearly budget of around $2M, supported mostly through donations
 • Supports the popular Wikipedia project, but also 8 others: Wiktionary, Wikinews, Wikibooks, Wikiquote, Wikisource, Wikiversity, Wikispecies, Wikimedia
Some figures

- Wikipedia:
 - 8 million articles spread over hundreds of language projects (english, dutch, ...)
 - 110 million revisions
 - 10th busiest site in the world (source: Alexa)
 - Exponential growth: doubling every 4-6 months in terms of visitors / traffic / servers
Some technical figures

- 30,000 HTTP requests/s during peak-time
- 3 Gbit/s of data traffic
- 3 data centers: Tampa, Amsterdam, Seoul
- 350 servers, ranging between 1x P4 to 2x Xeon Quad-Core, 0.5 - 16 GB of memory
- ...managed by ~ 6 people
Pretty graphs!
Pretty graphs!
Architecture: LAMP...

Users → Apache web server → Linux → MySQL

Mark Bergsma, mark@wikimedia.org, Wikimedia Foundation Inc. Wikimedia architecture
...on steroids.
Content Distribution Network (CDN)

• 3 clusters on 3 different continents:
 • Primary cluster in Tampa, Florida
 • Secondary caching-only clusters in Amsterdam, the Netherlands and Seoul, South Korea
 • Geographic Load Balancing, based on source IP of client resolver, directs clients to the nearest server cluster
 • Works by statically mapping IP addresses to countries to clusters
Squid caching

• HTTP reverse proxy caching implemented using Squid
• Split into two groups with different characteristics
 • ‘Text’ for wiki content (mostly compressed HTML pages)
 • ‘Media’ for images and other forms of relatively large static files
Squid caching

- 55 Squid servers currently, plus 20 waiting for setup
- ~ 1,000 HTTP requests/s per server, up to 2,500 under stress
- ~ 100 - 250 Mbit/s per server
- ~ 14,000 - 32,000 open connections per server
Squid caching

- Up to 40 GB of disk caches per Squid server
- Disk seek I/O limited
 - The more disk spindles, the better!
- Up to 4 disks per server (1U rack servers)
- 8 GB of memory, half of that used by Squid
- Hit rates: 85% for Text, 98% for Media, since the use of CARP
Squid cache invalidation

- Wiki pages are edited at an unpredictable rate
- Only the latest revision of a page should be served at all times in order not to hinder collaboration
- Invalidation through expiry times not acceptable, explicit cache purging needs to be done
- Implemented using the UDP based HTCP protocol: on edit application servers send out a single message containing the URL to be invalidated, which is delivered over multicast to all subscribed Squid caches
The Wiki software

- All Wikimedia projects run on a MediaWiki platform
- Open Source software (GPL)
- Designed primarily for use by Wikipedia/Wikimedia, but also used by many outside parties
- Arguably the most popular wiki engine out there
- Written in PHP
- Storage primarily in MySQL, other DBMSes supported
- Very scalable, very good localization
MediaWiki

• MediaWiki in our application server platform:
 • ~125 servers, 40 waiting to be setup
 • MediaWiki scales well with multiple CPUs, so we buy dual quad-core servers now (8 CPU cores per box)
 • One centrally managed & synchronized software installation for hundreds of wikis
 • Hardware shared with External Storage and Memcached tasks
MediaWiki caching

- Caches everywhere
- Most of this data is cached in Memcached, a distributed object cache

Content acceleration & distribution network

- Image metadata
- Users & Sessions
- Parser cache
- MediaWiki
- Difference cache
- Revision text cache
- Primary interface language cache
- Secondary interface language cache
MediaWiki dependencies

- A lot of dependencies in our setup

Diagram:
- MediaWiki
 - Apache
 - PHP
 - APC
- FastStringSearch
 - Proctitle
- Imagemagick
 - Tex
 - DjVu
- rsvg
 - ploticus
MediaWiki optimization

• We try to optimize by...
 • not doing anything stupid
 • avoiding expensive algorithms, database queries, etc.
 • caching every result that is expensive and has temporal locality of reference
 • focusing on the hot spots in the code (profiling!)
• If a MediaWiki feature is too expensive, it doesn’t get enabled on Wikipedia
MediaWiki profiling
Persistent data

• Persistent data is stored in the following ways:

 • Metadata, such as article revision history, article relations (links, categories etc.), user accounts and settings are stored in the core databases

 • Actual revision text is stored as blobs in External storage

 • Static (uploaded) files, such as images, are stored separately on the image server - metadata (size, type, etc.) is cached in the core database and object caches
Core databases

- Separate database per wiki (not separate server!)
- One master, many replicated slaves
- Read operations are load balanced over the slaves, write operations go to the master
 - The master is used for some read operations in case the slaves are not yet up to date (lagged)
- Runs on ~15 DB servers with 4 - 16 GB of memory, 6x 73 - 146 GB disks and 2 CPUs each
Core database scaling

• Scaling by:
 • Separating read and write operations (master/slave)
 • Separating some expensive operations from cheap and more frequent operations (query groups)
 • Separating big, popular wikis from smaller wikis
 • Improves caching: temporal and spatial locality of reference and reduces the data set size per server
Core database schema
External Storage

- Article text is stored on separate data storage clusters
 - Simple append-only *blob storage*
- Saves space on expensive and busy core databases for largely unused data
- Allows use of spare resources on application servers (2x 250-500 GB per server)
- Currently replicated clusters of 3 MySQL hosts are used; this might change in the future for better manageability
Text compression

• All revisions of all articles are stored
 • Every Wikipedia article version since day 1 is available
 • Many articles have hundreds, thousands or tens of thousands of revisions
 • Most revisions differ only slightly from previous revisions
 • Therefore subsequent revisions of an article are concatenated and then compressed
 • Achieving very high compression ratios of up to 100x
Media storage

- Currently:
 - 1 Image server containing 1.3 TB of data, 4 million files
 - Overloaded serving just 100 requests/s
 - Media uploads and deletions over NFS, mounted on all application servers
 - Not scalable
 - Backups take ~ 2 weeks
Media storage

• New API between media storage server and application servers, based on HTTP
 • Methods store, publish, delete and generate thumbnail

• New file / directory layout structure, using content hashes for file names
 • Files with the same name/URL will have the same content, no invalidation necessary

• Migration to some distributed, replicated setup
Thumbnail generation

- `stat()` on each request is too expensive, so assume every file exists

- If a thumbnail doesn’t exist, ask the application servers to render it